hillips又发现了最小化误差范函的加正则项。
即正则化的范函,而不是仅仅最小化误差范函,就能得到一个不适定的解题的解序列趋向于正确解。
换而言之。
第一部分的方程组,其实是一个描述渐变区域的序列集合。
甚至可能是......
图像?
想到这里。
徐云顿时来了兴趣。
从4db2可以判断,这应该是一个涉及到旋转曲面的问题。
第二行的jiksjikqxiwj则可以确定曲面与经线成了某个定角。
既然是定角,那么就可以假设定模型λa,b,π,以及观测序列oo1,o2,...,ot。
那么就有α1iπibio1,i1,2,...,n
αt+1i[j1nαtiaji]biot+1,i1,2,...,n
十五分钟后。
看着面前的结果,徐云若有所思:
“极大化的模型参数吗......”
随后他思索片刻,继续在纸上写下了一道公式:
qλ,λilogπi1po,iλ+it1t??1logaitit+1po,iλ+it1tlogbitotpo,iλ。
这是一个很简单的投影曲线,并且圆锥对数螺线上任一点的挠率也与该点到轴的距离成反比。
因此可以化简成另一个表达式。
δtii1i2,...,it??1maxpiti,t??1,...,i1,ot,...,o1λ,i1,2,...,n
解着解着,徐云的表情也愈发凝重了起来。
两个小时后。
徐云看着面前的图纸,眉头紧紧的拧成一团:
“好家伙,第一组方程的化解项,居然是一个观测态的方程?”
观测态方程其实是个很奇怪的玩意儿,它在数学中的释义比较复杂,但在物理中的释义却很简单:
它表示着一个时序的非概率模型,指的是状态空间中经过从一个状态到另一个状态的转换的非随机过程。
看到这里。
有些同学是不是感觉很熟悉?
没错。
这是一个定义上与马尔科夫链完全相反的模型,描述的是一种很小区